新书中文

手机浏览器扫描二维码访问

本站广告仅展示一次,尽可能不去影响用户体验,为了生存请广大读者理解

大模型:“人工智能+”的核心引擎(第2页)

垂直领域大模型的核心优势是“专业能力强,场景适配准”。它就像医生、工程师这样的专业人才,在自己的领域里能解决复杂问题。比如工业大模型,能通过分析设备的振动数据、温度数据,提前预测设备会不会出故障,甚至能精准识别生产线上产品的细微缺陷(比如手机屏幕上比头发丝还细的划痕);医疗大模型能读懂CT片、MRI影像,辅助医生判断病人是不是有肿瘤,还能根据病人的病史、症状,给出个性化的治疗建议。这些任务是通用大模型根本做不到的。

当然,垂直大模型也有短板——“通用性弱,跨领域难”。一个专门做医疗的大模型,没法用来写代码;一个专门做工业的大模型,没法用来写小说。它就像只会开飞机的飞行员,换了汽车就不会开了,只能在自己的“一亩三分地”里发挥作用。

现在行业里的主流玩法,是“通用大模型和垂直大模型协同”。简单说就是“通用大模型打基础,垂直大模型做深化”。比如企业想做一个医疗领域的AI客服,不用从零开始:先拿通用大模型(比如文心一言)做基础,利用它已经具备的语言理解能力(能听懂病人说的症状);然后再用医疗行业的专用数据(比如常见疾病的症状、治疗方法)对模型进行微调,把它变成“医疗垂直大模型”。这样一来,这个模型既有通用大模型的“语言理解能力”,又有垂直大模型的“医疗专业能力”,能准确回答病人的问题,还能给出初步的健康建议。这种协同模式,既解决了通用大模型的“不专业”问题,又解决了垂直大模型的“基础能力弱”问题,让大模型能更好地落地到具体行业。

三、能力边界:能做啥、不能做啥?明确边界才能避免踩坑

大模型的能力确实越来越强,从能聊天、写文章,到能画图、写代码,甚至能辅助做科研,但它并不是“无所不能”的。就像咱们人类有擅长的事,也有不擅长的事,大模型也有自己的“能力边界”——知道它能做啥、不能做啥,才能在“人工智能+”应用中合理用它,避免因为过度依赖而踩坑。

先看“理解能力”:大模型能处理复杂文本,但读不懂“深层内涵”。现在的大模型已经能轻松应对各种复杂文本,比如读几十页的法律合同、技术文档,还能快速提炼核心信息。比如某法律大模型,10分钟就能看完一份50页的合同,把里面的风险条款(比如违约赔偿、责任划分)标出来,还能给出修改建议,比人工读合同快好几倍。再比如读技术文档,大模型能把晦涩的专业术语翻译成大白话,帮非专业人士快速理解产品原理。

但面对需要“深层逻辑理解”的内容,大模型就容易“翻车”。比如读诗歌,它能读懂表面意思(比如“举头望明月,低头思故乡”说的是抬头看月亮、低头想家乡),但没法理解里面的隐喻和情感——比如诗人通过月亮表达的孤独感、对故乡的思念深度,大模型只能靠“套模板”来分析,很容易出现偏差。再比如读哲学理论,像“存在即合理”这样的观点,大模型能解释字面意思,但没法理解它背后的哲学体系(比如黑格尔的辩证法),也没法分析这个观点在不同历史背景下的意义。简单说,大模型能“看懂字”,但没法“读懂心”,对需要情感、隐喻、深层逻辑的内容,理解能力还不够。

这章没有结束,请点击下一页继续阅读!

再看“生成能力”:大模型能快速出内容,但“原创性”和“准确性”存疑。现在的大模型生成内容的能力已经很成熟了,比如AI写作工具,能根据用户需求生成营销文案、学术论文初稿、短视频脚本,甚至能模仿某个作家的风格;AI绘画工具,能根据文字描述(比如“一只穿着西装的猫在咖啡馆喝咖啡,复古风格”)生成高质量的艺术作品;AI代码工具,能帮程序员写函数、调试代码,甚至能生成完整的小程序。这些工具确实能大大提高工作效率,比如以前写一篇营销文案要花半天,现在用AI几分钟就能出初稿。

但生成内容的“原创性”和“准确性”是个大问题。一方面,部分生成内容存在“抄袭痕迹”——大模型是靠学习互联网数据训练出来的,如果训练数据里有别人的原创作品,大模型可能会在生成内容时“照搬”里面的句子、结构,导致侵权。比如某AI写作工具生成的文章,里面有一大段和某作家的散文一模一样,就是因为训练数据里包含了这篇散文。另一方面,大模型容易出现“幻觉”——就是生成不存在的信息,还说得跟真的一样。比如写学术论文时,大模型可能会编造虚假的参考文献(作者、期刊、发表时间都是假的);写技术文档时,可能会给出错误的技术参数(比如把某设备的功率写成1000瓦,实际只有100瓦)。这些错误如果没被发现,很可能会导致严重后果,比如学术造假、产品设计出错。

再看“逻辑推理能力”:大模型能解简单题,但搞不定“复杂推理”。在简单逻辑任务中,大模型的表现已经很优秀了,比如数学计算,某数学大模型能解决高中阶段的数学题(比如函数、几何、概率),准确率超过90%,比很多学生都厉害;再比如逻辑判断,像“如果A是B的爸爸,B是C的妈妈,那么A和C是什么关系”这样的问题,大模型能快速给出答案(祖孙关系)。

但面对“复杂逻辑推理”,大模型就容易“断片”。比如多步骤数学证明,像证明“勾股定理”“费马小定理”这样的问题,需要一步步推导,每一步都要基于前面的结论,大模型可能推到中间就出错了,或者跳过关键步骤,导致整个证明过程逻辑断裂。再比如复杂问题拆解,像“如何解决城市交通拥堵问题”,需要从交通规划、公共交通、限行政策、智慧交通等多个方面分析,还要考虑各方面的关联性(比如增加公交车数量可能会减少私家车,但也可能导致道路更拥挤),大模型只能给出零散的建议,没法形成完整的、有逻辑的解决方案。

除此之外,大模型的能力还受“训练数据”限制。一方面,训练数据有“偏见”,模型就会有“偏见”。比如训练数据里如果有很多“性别偏见”的内容(比如“女性不适合做工程师”“男性不适合做护士”),大模型生成的内容也会带有这种偏见——当用户问“谁适合做工程师”时,模型可能会回答“男性更适合”。另一方面,训练数据有“时效性”,模型没法回答“最新问题”。大模型的训练数据都是截止到某个时间点的(比如某模型的训练数据截止到2024年3月),如果问它2024年3月以后的新事件(比如“2024年世界杯冠军是谁”“2024年新发布的手机有哪些”),它就会回答“不知道”,因为这些信息没包含在训练数据里。

所以,在“人工智能+”应用中,咱们得清楚大模型的能力边界:能用它做基础的、重复性的工作(比如读合同、写初稿、解简单题),但不能让它做需要深层理解、高精度、复杂推理的核心工作(比如最终的医疗诊断、重要的学术研究、关键的决策制定)。在这些核心工作中,大模型可以作为“辅助工具”,帮人类提高效率,但最终的判断和决策,还得靠人类来做——毕竟大模型再聪明,也没法替代人类的专业知识和批判性思维。

总的来说,大模型确实是“人工智能+”的核心引擎,它的技术原理决定了它能快速学习、适配多个场景,它的发展格局能满足不同行业的需求,而明确它的能力边界能让咱们更安全、更合理地用它。随着技术的发展,大模型的能力边界会不断拓展,但在那之前,先搞懂它现在能做啥、不能做啥,才能让它真正为“人工智能+”赋能,而不是添乱。

喜欢大白话聊透人工智能请大家收藏:(www.youyuxs.com)大白话聊透人工智能

热门小说推荐
漫游五界

漫游五界

以下是一篇关于的小说简介示例,你可以根据喜好进一步完善修改哦:在浩瀚神秘的神话世界中,一场关乎人间存亡的危机悄然降临。肖飞、雅玲、月飞这三位身负高智商的非凡之人,本在天界各司其职,却因人间山河动荡、百姓陷入水深火热,引起了玉帝的高度关注。玉帝心怀悲悯,钦点肖飞、雅玲与月飞下凡,肩负起挽救人类、守护山河的重任。肖飞,......

70年代医生下海

70年代医生下海

成长在70年代的好医生,因为救治失误被发配农场改造,后下海经商,赚钱开诊所,一步步走上巅峰,可是子孙交友不慎,医院的一场大火,造成巨大的伤亡,差点让他步入深渊,他是否会成功解救自己的儿子,还有他内心的坚持。。。。。。......

凭尔去,忍淹留

凭尔去,忍淹留

《凭尔去,忍淹留》作者:钟花无艳内容简介:此处不留爷,必有留爷处!要是都不留爷呢?呃…暂时没想过这个问题。叹今生谁舍谁收?凭尔去,忍淹留!是不是不管爱上什么人也要天长地久求一个安稳难道真没有别的剧本难道真没有别的可能搜索关键字:主角:林婉之(小如)┃配角:小玄子,刹,萧奕安,素柔,其他一些重要人等第一章楔子]与你相遇,是...

先孕

先孕

姜锦音遭人陷害,为求自保,她将一个男人推入包厢。启料他是顶级财团三少爷,翻手为云覆手为雨的冷血大佬!一朝怀孕,姜锦音落入他的手掌心,被迫和他同住。她才发现,这男人不光冷血,还是个十足的疯子,要命的那种。为在他身边存活,她不得不如履薄冰,假装乖巧。冷彦尊一直以为姜锦音是个胆小鬼,小哭包,他一个眼神她就发抖。若不是她怀......

官场之权掌天下

官场之权掌天下

官场之权掌天下情节跌宕起伏、扣人心弦,是一本情节与文笔俱佳的都市言情小说,官场之权掌天下-红尘小吏-小说旗免费提供官场之权掌天下最新清爽干净的文字章节在线阅读和TXT下载。...

穿越权游做女王

穿越权游做女王

穿越权游做女王情节跌宕起伏、扣人心弦,是一本情节与文笔俱佳的其他类型小说,穿越权游做女王-纳兰云卿-小说旗免费提供穿越权游做女王最新清爽干净的文字章节在线阅读和TXT下载。...